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1. Phys.: Condens. Maner 6 (1994) 62954303.  Printed in the UK 

Non-linear interaction of picosecond acoustic pulses with a 
paramagnetic crystal 

S V Sazonov 
Physics Department, Tomsk Stlte University, 36 Lenina Prospekt. Tomsk 634050. Russia 

Received 4 October 1993, in final form 3 March 1994 

Abstract. Non-linear propagation of ultn-shon lateral circularly polarized strain pulses in a 
paramgnetic crystal of cubic symmetry localized in an externnl magnetic field at super-low 
temperalure has been studied. The direction of the magnetic field is parallel to the direction of 
pulse propagation and the fourth-order symmetry ais. Under certain physical conditions pulse 
propagation is descFibed by the 'derivative non-linex Schrcdinger equation'. which belongs to 
the equations infegnted by the inverted scattering Wansfom method. The phenomenon of fu l l  
reflection of acoustic pulses on the paramagnetic cpstal surface is predicted. The possibility of 
continuous pxmeu ic  increase of frequency of a high-power acoustic signal during its passage 
through lhe panmagnetic crystll has been shown. This frequency increase CM be controlled 
through changes in the power of Ole incoming signal. In this direcuon in principle one u n  
obrnin IO-fold frequency increase of an initial pulse. AS an example the crystal MgO with 
impurities of pxmagnetic ions CoZt is considered. 

1. Introduction 

Generation of picosecond acoustic pulses under laboratory conditions (Akhmanov and Gusev 
1992) gave rise to a number of theoretical papers dedicated to the interaction of such pulses 
with paramagnetic crystals (Sazonov and Yakupova 1992, Sazonov 1992, 1993a). High- 
power picosecond lateral linearly polarized strain pulses have been investigated by Sazonov 
(1992, 1993a). However, spin-lattice interaction may lead to the rotation of strain-wave 
polarization plane (Tucker and Rampton 1972, Denisenko 1971). 

Picosecond acoustic pulses are video pulses. i.e. contain nearly a single period of 
oscillations. So, herein the slowly varying envelope approximation cannot be applied for a 
wave equation. The purpose of the present paper is to investigate tbe propagation of lateral 
circularly polarized acoustic pulses of picosecond time duration during the interaction of 
the spin system S = of paramagnetic atoms with crystal strains. As a physical realization 
of this model, the crystal MgO containing Kramers' doublet impurities of the paramagnetic 
ions CO'+ may be proposed (Tucker 1966). 

Let a lateral strain pulse propagate parallel to the magnetic field Ho, directed along the 
fourth-order symmetry axis of a cubic symmetry crystal. The magnetic field causes Zeeman 
splitting of the Kramers doublet into two sublevels. This direction may be taken for the z 
axis. The general Hamiltonian of the system investigated can be written in the form: 
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where Ha(s> is the Hamiltonian density of an acoustic field (spin system) and Hi,, is the 
Hamiltonian density of the interaction of spins with an acoustic field. In our case 

Here U = ( u ~ ,  uY), P = ( P x ,  Ps) are displacement and strain field pulse vectors 
respectively, a is the velocity of lateral sound, b is the fourth-order dimensionless 
anharmonicity parameter (cubic anhmonic i ty  is absent in the case of lateral strain pulses 
(Kosevich and Kovalev 1989)), pa is the parameter of spatial dispersion of acoustic field (for 
a onedimensional lattice p. = h2/12, where h is the distance between the nearest atoms of a 
crystal (Sazonov 1992)), p is the average density of the medium, WO is the Zeeman splitling 
frequency of the h e r s  doublet, h is the Planck constant, F is lhe lateral component 
of spin-acoustic interaction tensor, and S,, S,, S, are the spin-density operators satisfying 
commutation relationships of the following type: 

[S,(T), S,(P')I = iE,jmSm(T)S(T - T') .  (5) 

Here k, j ,  m = x ,  y .  z ,  ~ k j ,  is the absolute nntisymmetrical tensor, is thc parameter 
of spatial dispersion caused by non-local spin action on a strain field and back (for a one- 
dimensional lattice we have 0% = h2/6 (Sazonov 1992)). 

Expression (4) for Hi,, is a generalization of the expression considered in Denisenko 
(1971) on the case of short pulses when the effect of discrete crystal structure is essential 

# 0). 
Since the spatial length scale of a strain pulse I fulfils the inequality I >> h ,  then 

To obtain equations describing the strain field we will use the Hamiltonian formalism: 
ip9a3uiaz"i << i a t u a z i .  

ap ,SH a% S H  
at SP at &U. 

(6) - -- _ = _  

After quantum averaging on spin states we find that 

n a 2 E  ,a2E ,a4E 2 az 2 _ -  a - -&a - - 3ha -(la1 E )  = F-hwo 
at2 az2 a24 a22 P 

where E = zx1 + its,,, &xi = au,/az, cyl = auyfaz are the tensor components of crystal 
strain, nS = {SA) + i{Sy), n is the concentration of paramagnetic atoms in a crystal, and 
(. . .) is the quantum averaging operation. 

Using the Heisenberg presentation for spin operators. we find that 

as/at = iwo(S - F E W )  (8) 

awlat = -QF Im(BS') (9) 

where W = (u , ) /n ,  E = E  t pSa2s/azZ 
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2. FuIl reflection of a strain pulse 

Let us consider the case when 

w, >> 1 (10) 

where T~ is characteristic temporal duration of a strain pulse. 
Inequality (10) indicates the slow change of pulse parameters compared with spin 

precession in a magnetic field. It is clear that the pulse interacts weakly with the spin system 
and in this sense it propagates in the quasitransparency regime in non-linear medium. Then 
from (8) it is easy to understand that inequality (IO) is equivalent to the condition 

F21ElZ << I .  (11) 

Having, for instance, F - 10 (Tucker 1966) we find that ] E l  << 0.1. Corresponding pressure 
inside the pulse is P - pa21E1 <( 5 x  lo9 Pa at p Y 5 g cm-', a - 3 x 10' cm s-I. We hope 
that strain pulses with pressures P - lO9-lOI0 Pa will be generalized under experimental 
conditions in the near future (Akhmanov and Cusev 1992). 

By analogy with the papers of Crisp (1970) and Belenov et al (1991) the solution of 
equation (S), written in the form 

can be expanded in terms of small parameters pl = (woT,)-' and p2 = h j l :  

I a2 - - - ( E W )  +.  . . 
at2 

Substitute (13) into (9), keeping the first two terms of the expansion. Moreover, subject to 
the condition ( I I ) ,  we will assume that W = W, W ( r  = -CO) in the right-hand part of 
equation (9). Then upon integration we obtain 

W - W,(l - F21&I2/2). (14) 

After substitution of (14) into (13), subject to (1 I) ,  we find that 

Substitute (15) into (7). Then 

P 

Here we inboduce the refractive index 

N = (1 + F2nhwoW,/pa2)-'i2. 
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An acoustic video pulse is not resonant for any pair of quantum levels. Therefore, a two- 
level approximation can be applied here provided that these levels are at a sufficient distance 
from any other quantum levels: U, >> and Fj << F, where oj is the quantum transition 
frequency from one of the Kramers’ doublet sublevels to one of the remote quantum levels, 
6 is the spin-elastic coupling constant for the corresponding quantum transition. The very 
large strains would be likely to mix srates from higher levels into the Kramers doublet. 
But if inequalities (10) and (1  1) are valid, we may keep in each expression of (15) type, 
corresponding to the j t h  transition with account for replxements 00 + uj, F + Fj and 
W, --t - Wj.2, only the first term, neglecting other terms. Here Wi.2 is the initial population 
probability of one of the h e r s ’  doublet sublevels. Then we can take into account the 
remote quantum level mixing by using the following replacement in (17): I + 1 - 6. Here 
6 is a positive constant. If HO = 0, then q = 0 and uj f 0. Therefore, this constant is 
very slightly dependent on the external magnetic field value. In the case of thermodynamic 
equilibrium 

W, = - tanh(huo/2k~T) (18) 

where ks is the Boltzmann constant and T is the absolute medium temperature 
Then if 

I (F’nhuolMnoa’) tanh(huo12k~T) > 1 - 6 (19) 

where M and no are the mass of a crystal lattice loop and concentration of molecules 
forming a crystal lattice respectively (mass and concentration of MgO), the acoustic wave 
cannot propagate in a paramagnetic crystal. In this case the strain pulse must experience 
full rcflection on the surface of the paramagnetic crystal. 

The constant of spin-elastic coupling for CO’+ in MgO may attain values F - IO2 
(Tucker 1966). Considering also that M - lo-’’ g, no/n - 10, a - l@ cm s-’, 
huo/kBT >> 1 and 6 << 1, we find that condition (19) is fulfilled when WO > 10” s-’. 
Such Zeeman splitting frequencies are usually used in electron paramagnetic resonance (EPR) 
spectroscopy. 

3. Acoustic soliton 

In further discussion we will investigate the case when N takes only real values. The latter 
is true if q c 1. In the paper of Sazonov and Yakupova (1992) this condition may serve as 
the condition under which a bound state of two strain components of a steady-state video 
pulse can be formed. 

The right-hand part of (16) is proportional to positive degrees of the small parameters 
pl and pz. So we can reduce this equation deflating the derivative order (Belenov et ai 
1991): 

Here 5 = z - a t f N .  
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The second and fourth terms in (20) describe different dispersion effects, whereas the 
third term deals with non-linearity. The relationship between the fourth and second terms 
can be estimated as: 

max(wor,, (ooTp)-’w~hz/az]. 

Let wo - 10” s-’, h - IO-* cm, a - 3 x IO5 cm s-’, rp - 100 ps. Then war, - 10, 
(worp)-’(woh/a)2 - Consequently, the fourth term on the left-hand side of equation 
(20) can be neglected. In this case we have the ’derivative non-linear Schradinger equation’ 
(DNLS): 

i-+- (21) 

which is integrated by the inverse scattering transform method (&up and Newell 1978). 
Here the dispersion mechanism caused by non-local temporal relationship between 

the strain field and spins substantially affects the pulse dynamics. The spatial dispersion 
mechanisms induced by discrete crystal structure are not essential here. 

To seek the one-soliton solution of equation (21) we will write E in the form: 

E = @ exp(i‘p) (22) 

where @ and (0 are real. 

obtain 
Substituting (22) into (21) and separating the real part from the imaginary one, we 

(23) 2N 

and 

We will see the solution to equations (23) and (24) in the form 

E = E ( <  + cr) ’p = w f  + 4(< + ct)  c = const. (25) 

This solution corresponds to pulses propagating along the z axis at a speed of 
U = a / N  - c and rotating in the transverse plane. In this case equation (23) possesses 
the motion integral: 

where the prime designates the derivative with respect to +ct 
E + 0, then A = 0. 

z - ut .  Since at t -+ zkw, 
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Expressing ‘p’ in terms of $ from (26) and substituting the corresponding expression 
into (24), subject to (‘E), we will find that 

[6hNZ + F 2 ( N Z  - I)] 
8 ( N 2  - 1 )  

The solution in term of a solitary phase has the following form: 

(o = ut - k(z - u t )  - 6tan-’[q tanh[(z - u t ) / l ] )  

where 

Solution (28) and (29) depends on two free parameters. For instance, 1 and k can be 
chosen as such. If ki > 1, we have the envelope soliton. In this limit solution (28)-(32) 
formally coincides with the one-soliton solution of the ‘non-linear Schrodinger equation’ 
(NLS). In the case when ki - 1 we have from (28)-(32) a video soliton, i.e. a soliton that 
contains nearly a single period of acoustic oscillations. 

The analysis of (28) and (29) shows that for inequality (IO) and (1  1) to be valid the 
following conditions must be fulfilled: w / q  << 1. 

The strain tensor components cXZ and cyZ corresponding to the pulse of the form of (22) ,  
(28)-(32) are shown in figure 1 for a fixed moment of time. At other moments of time 
the components cXZ and E, ,~  change their configurations in an accompanying framework due 
to the rotation of the polarization plane. However, the scale length of strain localization 
defined by the parameter I remains unchangeable. 

As follows from physical considerations a pulse of the form of (28) and (29) can be 
stable only at U < a / N .  However, formally solution (28) and (29) assumes the case U z u / n  
at 6hN2 + F 2 ( N Z  - 1) < 0 (see (30) and (31)). From (30) it follows hat  to overcome 
the velocity barrier U = u / N .  an infinitely large density of strain energy is needed, which 
contradicts the initial assumption made in inequality (11). Thus, the pulse (28) and (29) 
can be formed at 

6hN2  + F 2 ( N 2  - I )  z 0. (33) 

If W, > 0 (a non-equilibrium case), then NZ c I .  In the absence of lattice 
anharmonicity the formation of pulses of the form of (28) and (29) turns out to be impossible. 
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Figure 1. lnslmtaneous profile of the circularly polarized soliton components governed by 
equation (21); Nz = 2. A = 10, F = 10. N = 3 Y IO' cm sr', WO = 10" sc', k = IO5 cm-', 
I = 3 x IO-' cm. 

However, a 'rigid' anharmonicity (A > 0) makes this formation possible when fulfilling 
condition (33). At this we have that k c 0 and w c 0. In the case of 'soft' anharmonicity 
(A -= 0) and in the absence of paramagnetic centres the formation of a strain soliton is 
impossible as well. However, the presence of these centres favours the soliton formation 
in an equilibrium case ( N 2  > 1 ) .  Thus, the availability of two different non-linearity 
mechanisms can lead to the formation of solitary circularly polarized pulses, when in the 
absence of one of the mechanisms such formation proves to be impossible. 

4. Continuous parametric frequency increase 

Consider the generation of high frequencies of a high-power acoustic pulse as a result of 
its interaction with a paramagnetic crystal. Let the pulse be so strong that the following 
condition is valid: 

F*IZI* >> I ,  Iw;laqplari*. (34) 

We consider also that the influence of the remote quantum levels on the quantum 
transition between Kramers' doublet sublevels is still slight. 

At F - IO* this condition is met for pulses with the relative strain I&] > 0.03. Only 
very pure paramagnetic crystals without any impurities and dislocations are able to bear 
such relative strains. The inequality FZIEIZ >> Iw;'aq/atlZ indicates the slowness of the 
pulse polarization plane rotation compared with quantum spin transitions. 

Introduce new variables f and L: 

Z = fexp( iq)  S = iLexp(iq). (35) 
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Then the set of equations (8) and (9) takes the form 

If (34) is fulfilled the first term of the right-hand part of (36) can be ignored. Then the 
functions f and L are real and we have solutions of system (36) and (37) in the form 

‘IV = W ,  cos8  L = W ,  sin 0 (38) 

where 

I 

e = oo S_, dt,  

Consequently, 

s = iWQexp(ip)sin@. (39) 

Solutions (38) and (39) describe the nutation effect in a super-strong field: slow spin 
rotation in an equatorial plane at a frequency of w 5 aVp/at is imposed on fast spin rotation 
in  a meridional plane of the Bloch sphere (Islz+ W z  = W&) at a frequency of S2 = wFf. 
In a specific case when w, f = const at the outlet of a paramagnetic crystal, we have two 
modes with frequencies: 

~ 1 , ~ = w o F f  fi0-Q-1‘” (40) 

where I is the pulse intensity. Since inequalities (34) are fulfilled then w1.2 >> w .  
Having w 5 WO, F - IO2, f - Is1 - 0.1, we obtain a IO-fold increase in acoustic 

signal frequency. Further increase in relative strain with the aim of increasing the frequency 
transformation coefficient may lead to crystal destruction. Note that one can continuously 
control the frequency values 01 and w2 at the outlet of a circularly polarized signal by 
changing the inlet signal intensity. In the case of linearly polarized pulses at the outlet of 
a paramagnetic crystal, a discrete harmonic series of the initial frequency w is generated 
(Sazonov 1993a). Here at the growth of pulse intensity applied on a sample the energy is 
transferred to higher harmonics 20 ,3w.  . . _. Similar calculations for the case of linearly 
polarized and circularly polarized optical pulses interacting with a two-level non-resonant 
medium are given by Belenov etal (1991) and by Sazonov (1993b) respectively. 

The effectiveness of the process of frequency parametric increase can be estimated upon 
calculating its cross section U. According to the definition we havc 

U = .r-]law/atl 

where J is the density of phonon flux of an initial signal. It is obvious that J - aujhw, 
where U = 0 . 5 p ~ ~ 1 & ] ~  is the energy density of a strain field. At S2 = const after time 
averaging and using (18) we find that 

0 N hwiF2 -- w tanh (*) 
pa’ n ~ E T  
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It us understandable that the process under consideration may be sufficiently effective at 
T c h q / 2 k ~ .  Substituting here 00 - IOIO s-', we find that T < 0.1 K. These temperatures 
are important moreover to avoid a strong attenuation of a coherent signal at the expense 
of its scattering on hot non-coherent phonons of a crystal. At F - lo2, p 2 5 g ~ m - ~ ,  
a - 3 x lo5 cm s-', w/S2 - 0.1 we have that U - IO-*' cm2. If the concentration of 
paramagnetic atoms in a crystal is n - IOu then for an average distance of a free 
run of pulse phonon i we obtain i - (un)-' - lo-' cm. Obviously if A =- i, where A 
is the thickness of a crystal in the direction of initial signal propagation, then practically 
all the initial signal is subject to the frequency transformation. For the numerical instance 
under consideration, a crystal with A = 1 cm will suffice. Note that the increase in ratio 
S2 j w  - w,.*/w leads to cross section decrease. Consequently, a crystal of greater thickness 
should be used. 
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